Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.29.470362

ABSTRACT

The COVID-19 pandemic has been exacerbated by the emergence of variants of concern (VoCs). Many VoC mutations are found in the viral spike protein (S-protein), and are thus implicated in host infection and response to therapeutics. Bivalent neutralizing antibodies (nAbs) targeting the S-protein receptor-binding domain (RBD) are promising therapeutics for COVID-19, but are limited due to low potency and vulnerability to RBD mutations found in VoCs. To address these issues, we used naive phage-displayed peptide libraries to isolate and optimize 16-residue peptides that bind to the RBD or the N-terminal domain (NTD) of the S-protein. We fused these peptides to the N-terminus of a moderate affinity nAb to generate tetravalent peptide-IgG fusions, and showed that both classes of peptides were able to improve affinities for the S-protein trimer by >100-fold (apparent KD <1 pM). Critically, cell-based infection assays with a panel of six SARS-CoV-2 variants demonstrate that an RBD-binding peptide was able to enhance the neutralization potency of a high-affinity nAb >100-fold. Moreover, this peptide-IgG was able to neutralize variants that were resistant to the same nAb in the bivalent IgG format. To show that this approach is general, we fused the same peptide to a clinically approved nAb drug, and showed that it rescued neutralization against a resistant variant. Taken together, these results establish minimal peptide fusions as a modular means to greatly enhance affinities, potencies, and breadth of coverage of nAbs as therapeutics for SARS-CoV-2.


Subject(s)
Oculocerebrorenal Syndrome , Graft vs Host Disease , COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.01.363788

ABSTRACT

The outbreak of SARS in 2002-2003 caused by SARS-CoV, and the pandemic of COVID-19 in 2020 caused by 2019-nCoV (SARS-CoV-2), have threatened human health globally and raised the urgency to develop effective antivirals against the viruses. In this study, we expressed and purified the RNA-dependent RNA polymerase (RdRp) nsp12 of SARS-CoV and developed a primer extension assay for the evaluation of nsp12 activity. We found that nsp12 could efficiently extend single-stranded RNA, while having low activity towards double-stranded RNA. Nsp12 required a catalytic metal (Mg2+ or Mn2+) for polymerase activity and the activity was also K+-dependent, while Na+ promoted pyrophosphorylation, the reverse process of polymerization. To identify antivirals against nsp12, a competitive assay was developed containing 4 natural rNTPs and a nucleotide analog, and the inhibitory effects of 24 FDA-approved nucleotide analogs were evaluated in their corresponding active triphosphate forms. Ten of the analogs, including 2 HIV NRTIs, could inhibit the RNA extension of nsp12 by more than 40%. The 10 hits were verified which showed dose-dependent inhibition. In addition, the 24 nucleotide analogs were screened on SARS-CoV primase nsp8 which revealed stavudine and remdesivir were specific inhibitors to nsp12. Furthermore, the 2 HIV NRTIs were evaluated on 2019-nCoV nsp12 which showed inhibition as well. Then we expanded the evaluation to all 8 FDA-approved HIV NRTIs and discovered 5 of them, tenofovir, stavudine, abacavir, zidovudine and zalcitabine, could inhibit the RNA extension by nsp12 of SARS-CoV and 2019-nCoV. In conclusion, 5 FDA-approved HIV NRTIs inhibited the RNA extension by nsp12 and were promising candidates for the treatment of SARS and COVID-19.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.31.362848

ABSTRACT

Recombinant neutralizing antibodies (nAbs) derived from recovered patients have proven to be effective therapeutics for COVID-19. Here, we describe the use of advanced protein engineering and modular design principles to develop tetravalent synthetic nAbs that mimic the multi-valency exhibited by IgA molecules, which are especially effective natural inhibitors of viral disease. At the same time, these nAbs display high affinity and modularity typical of IgG molecules, which are the preferred format for drugs. We show that highly specific tetravalent nAbs can be produced at large scale and possess stability and specificity comparable to approved antibody drugs. Moreover, structural studies reveal that the best nAb targets the host receptor binding site of the virus spike protein, and thus, its tetravalent version can block virus infection with a potency that exceeds that of the bivalent IgG by an order of magnitude. Design principles defined here can be readily applied to any antibody drug, including IgGs that are showing efficacy in clinical trials. Thus, our results present a general framework to develop potent antiviral therapies against COVID-19, and the strategy can be readily deployed in response to future pathogenic threats.


Subject(s)
COVID-19 , Virus Diseases , Tumor Virus Infections
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.18.102038

ABSTRACT

Antibody-based interventions against SARS-CoV-2 could limit morbidity, mortality, and possibly disrupt epidemic transmission. An anticipated correlate of such countermeasures is the level of neutralizing antibodies against the SARS-CoV-2 spike protein, yet there is no consensus as to which assay should be used for such measurements. Using an infectious molecular clone of vesicular stomatitis virus (VSV) that expresses eGFP as a marker of infection, we replaced the glycoprotein gene (G) with the spike protein of SARS-CoV-2 (VSV-eGFP-SARS-CoV-2) and developed a high-throughput imaging-based neutralization assay at biosafety level 2. We also developed a focus reduction neutralization test with a clinical isolate of SARS-CoV-2 at biosafety level 3. We compared the neutralizing activities of monoclonal and polyclonal antibody preparations, as well as ACE2-Fc soluble decoy protein in both assays and find an exceptionally high degree of concordance. The two assays will help define correlates of protection for antibody-based countermeasures including therapeutic antibodies, immune {gamma}-globulin or plasma preparations, and vaccines against SARS-CoV-2. Replication-competent VSV-eGFP-SARS-CoV-2 provides a rapid assay for testing inhibitors of SARS-CoV-2 mediated entry that can be performed in 7.5 hours under reduced biosafety containment.

SELECTION OF CITATIONS
SEARCH DETAIL